2,966 research outputs found

    Magnetic fields in nearby galaxies

    Get PDF
    We describe a recent full-polarization radio continuum survey, performed using the Westerbork Synthesis Radio Telescope (WSRT), of several nearby galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The WSRT-SINGS survey has been utilized to study the polarized emission and Faraday rotation measures (RMs) in the targets, and reveals an important new observational trend. The azimuthal distribution of polarized flux seems to be intimately related to the kinematic orientation of galaxies, such that in face-on galaxies the lowest level of polarized flux is detected along the kinematic major axis. In highly inclined galaxies, the polarized flux is minimized on both ends of the major axis, and peaks near the minor axis. Using models of various three-dimensional magnetic field geometries, and including the effects of turbulent depolarization in the midplane, we are able to reproduce the qualitative distribution of polarized flux in the target galaxies, its variation with inclination, and the distribution of RMs, thereby constraining the global magnetic field structure in galaxies. Future radio telescope facilities, now being planned and constructed, will have properties making them extremely well-suited to perform vastly larger surveys of this type, and are thereby poised to significantly increase our understanding of the global structure of galactic magnetic fields. We discuss progress that can be made using surveys which will be realized with these new facilities, focusing in particular on the Aperture Tile in Focus (APERTIF) and Australian Square Kilometre Array Pathfinder (ASKAP) telescopes, both based on Focal Plane Array (FPA) designs, which are expected to be particularly useful for wide-field polarization applications.Comment: In proceedings of "Panoramic Radio Astronomy" conference held 2-5 June 2009, Groningen, the Netherlands. 6 pages, 2 figure

    Information Management System for the California State Water Resources Control Board (SWRCB)

    Get PDF
    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included

    The Responsibility of the Mentally Subnormal

    Get PDF
    n/

    M82 - A radio continuum and polarisation study II. Polarisation and rotation measures

    Get PDF
    The composition and morphology of the interstellar medium in starburst galaxies has been well investigated, but the magnetic field properties are still uncertain. The nearby starburst galaxy M82 provides a unique opportunity to investigate the mechanisms leading to the amplification and reduction of turbulent and regular magnetic fields. Possible scenarios of the contribution of the magnetic field to the star-formation rate are evaluated. Archival data from the VLA and WSRT were combined and re-reduced to cover the wavelength regime between 3cm and 22cm. All observations revealed polarised emission in the inner part of the galaxy, while extended polarised emission up to a distance of 2kpc from the disk was only detected at 18cm and 22cm. The observations hint at a magnetised bar in the inner part of the galaxy. We calculate the mass inflow rate due to magnetic stress of the bar to 7.1 solar masses per year, which can be a significant contribution to the star-formation rate of M82 of approximately 13 solar masses per year. The halo shows polarised emission, which might be the remnant of a regular disk field. Indications for a helical field in the inner part of the outflow cone are provided. The coherence length of the magnetic field in the centre is similar to the size of giant molecular clouds. Using polarisation spectra more evidence for a close coupling of the ionised gas and the magnetic field as well as a two-phase magnetic field topology were found. Electron densities in the halo are similar to the ones found in the Milky Way. The magnetic field morphology is similar to the one in other nearby starburst galaxies with possible large-scale magnetic loops in the halo and a helical magnetic field inside the outflow cones. The special combination of a magnetic bar and a circumnuclear ring are able to significantly raise the star-formation rate in this galaxy by magnetic braking

    Panoramic Radio Astronomy:Wide-field 1-2 GHz research on galaxy evolution

    Get PDF

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page
    corecore